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In this paper, the free vibrations of a wide range of non-uniform rectangular
plates in one or two directions are considered. The domain of the plate is
bounded by x= a1a, a and y= b1b, b in rectangular co-ordinates. The
thickness of the plate is continuously varying and proportional to the power
function xsyt. A variety of tapered rectangular plates can be described by giving
the taper factors, s and t, di�erent values. s and t may be given arbitrary real
numbers if both a1 6� 0 and b1 6� 0 or arbitrary non-negative numbers if a1=0
or b1=0. The uniform rectangular plate is a special case by letting both s and
t equal to zero. A new set of admissible functions which are the static solutions
of the tapered beam (or a strip taken from the tapered rectangular plate),
under an arbitrary static load expanded into a Taylor series, is developed.
Unlike conventional admissible functions, the set of static beam functions will
vary appropriately with the thickness variation of the plate. The eigenfrequency
equation is obtained by the use of the Rayleigh±Ritz method. A general
computer program has been compiled and some numerical results are
tabulated. On the basis of comparison with available results in the literature, it
is shown that the ®rst few eigenfrequencies can be obtained with good accuracy
by using only a small number of terms of the static beam functions.

# 1999 Academic Press

1. INTRODUCTION

As one of the widely used structural component elements in aerospace, civil and
ocean engineering systems etc., the rectangular plate has received much
attention. Its dynamic behavior is the subject of many papers in the literature.
Much of the work reported by Leissa [1, 2] has been concerned with plates of
uniform thickness. However, the problem of the vibration of plates with varying
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thickness has received rather less attention, especially for rectangular plates with
varying thickness in two directions.
It is well known that the analytical solutions of vibration characteristics are

available for rectangular plates of uniform thickness with some particular types
of boundary conditions, such as two opposite edges simply supported. However,
the solutions of tapered rectangular plates, even for the linearly varying
thickness in one direction and the simplest boundary conditions such as all edges
simply supported, have not been obtained analytically. In such a case, although
the governing partial differential equation can be reduced to a fourth order
ordinary differential equation with variable coef®cients, at the very end
numerical solution techniques have to be used. Some methods and results have
been reported by Leissa [3±5]. A review of the literature quickly reveals that
reported work about the free vibration of non-uniform rectangular plates mainly
focused on those having two opposite edges simply supported and with linearly
varying thickness in one direction. Appl and Byers [6] used the method of upper
and lower bounds to analyse the fundamental frequency of a rectangular plate
with all edges simply supported and with linear thickness variation in one
direction, and Gumeniuk [7] used the ®nite difference technique to obtain a
formula for the fundamental frequencies of such plates. Chopra and Durvasula
[8] studied the free vibration of simply supported skew plates with linear
thickness variation in one direction by using double Fourier sine series to
represent the plate de¯ection and Lagrange's equation to obtain the
eigenfrequency equation. In a recent paper, Kukreti et al. [9] used the differential
quadrature method and the Rayleigh±Ritz method to analyse the fundamental
frequencies of simply supported rectangular plates with linearly varying
thickness in one direction. Kobayashi and Sonoda [10] described an application
of power series expansions to the free vibration and buckling of rectangular
plates with two opposite edges simply supported and linearly varying thickness
in one direction. Soni and Sankara Rao [11] used a quintic spline technique to
analyse the free vibration of rectangular plates having two opposite edges of
simply supported and exponentially varying thickness in one direction, and
subsequently Gupta and Lal [12] extended this method to include the effect of an
elastic foundation, and Zhou [13] presented an asymptotic solution for the free
vibration of such a plate. Recently, Bert and Malik [14] used the differential
quadrature method to analyse the free vibration of two opposite edges of simply
supported rectangular plates with linearly varying thickness in one direction, and
the results were obtained with good accuracy. The free vibrations of non-
uniform rectangular plates with other boundary conditions were also considered
by some investigators. Ashton [15] used beam eigenfunctions, Grossi and Bhat
[16] used boundary characteristic orthogonal polynomials as the admissible
functions to study the free vibration of linearly tapered rectangular plates with
elastic constraints at the edges. Mukhopadhyay [17] presented a semi-analytical
solution for the free vibration of non-uniform rectangular plates, in which beam
eigenfunctions in one direction, and a ®nite difference scheme in another direction
were used. Ng and Araar [18] used six terms of two-dimensional polynomial
functions as the trial function to study the fundamental eigenfrequency and
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critical load for a clamped rectangular plate with linear thickness variation.
Pulmano and Gupta [19] analysed the free vibration of linearly tapered
rectangular plates by the use of the ®nite strip method, using a combination of
beam eigenfunctions and six terms of polynomials. Malhotra et al. [20] used the
conventional beam functions to study the eigenfrequencies of an orthotropic
square plate with parabolic thickness variation. Dawe [21] used the ®nite element
method to study the free vibration of rectangular plates with variable thickness.
It should also be noted that Laura and co-workers [22±31] systematically and
widely investigated the vibrational characteristics of tapered rectangular plates
with various boundary supports (including edges elastically restrained against
rotation) by the use of several approximate methods such as the Galerkin
method, the Ritz method, the Rayleigh's optimization method, the extended
Kantorovich method, the differential quadrature method and combinations of
these methods, in which simple polynomials were frequently used as the
displacement functions of the plates in one or two directions and are really only
valid for estimating lower order eigenfrequencies, especially for estimating the
fundamental eigenfrequency of the non-uniform plates.
Although there have been several approaches to calculating the vibration

characteristics of non-uniform rectangular plates, it is still of great signi®cance to
develop a simpler, more versatile, more ef®cient and/or more accurate method
for solving such problems. In this paper, rectangular plates with variable
thickness in the form of a power function are considered. The eigenfrequencies
of the plates are found by the Rayleigh±Ritz method. A new set of admissible
functions are developed from the static solutions of a tapered beam under a
Taylor series load. This tapered beam may be considered as a unit width strip
taken from the tapered rectangular plate in the longitudinal direction or the
transverse direction. Only a set of strip functions in one direction needs to be
derived because the thickness variations in the two directions are both in the
form of power functions. This set of static beam functions is also applicable to
tapered rectangular plates with sharp edges and rectangular plates with uniform
thickness in one or two directions. Some numerical results are given and
compared with known results. Good agreement has been achieved.

2. THE DEVELOPMENT OF A SET OF TAPERED BEAM FUNCTIONS

Consider a tapered beam with a unit breadth and the continuously variable
depth under an arbitrary load q(x), as shown in Figure 1. The length of the
sharp ended beam is l. The origin of the co-ordinate system is at the sharp end
of the beam and the x-axis is the centre line of the beam. A truncated beam is
considered as part of the sharp ended beam and the actual length of the beam is
L=(1ÿ a)l. a (0E a< 1) is referred to as the truncation factor of the beam and
taken as 0 for the sharp ended beam. Assume that the depth h(x) of the beam
can be described by a power function

h�x� � h0�x=l�r �1�
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where h0 is the depth of the beam at the end x= l. The index r, referred to as the
taper factor of the beam, is an arbitrary real number for a truncated beam or an
arbitrary non-negative number for a sharp ended beam or is equal to zero for a
uniform beam.
It is assumed that the breadth and depth dimensions of the beam are small

compared with its length and that the Bernoulli±Euler beam theory is valid. It is
well-known that the static de¯ection y of the tapered beam must satisfy the
fourth order linear ordinary differential equation

d2=dx2�EI�x�d2y=dx2� � q�x�, �2�

where EI(x) is the ¯exural rigidity of the beam and can be written as

EI�x� � Eh3�x�=12 � �Eh30=12��x=l�3r � EI0�x=l�3r �3�

in which EI0 is the ¯exural rigidity of the beam at the end x= l. Introducing a
non-dimensional co-ordinate x=x/l and designating

Q�x� � �l4=EI0�q�xl�, �4�
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Figure 1. The tapered beams: (a) a sharp ended beam, (b) a truncated beam, (c) a uniform
beam.
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equation (2) becomes

�d2=dx2��x3r d2y=dx2� � Q�x�: �5�
The arbitrary static load Q(x) can be expanded, if one wishes, into a Taylor

series

Q�x� �
X1
i�0

Q 0ix
i, �6�

where Q 0i are the undetermined constants, which can be determined uniquely if
Q(x) is a given function.

Substituting equation (6) into equation (5), the solution of the de¯ection y of
the beam may be written in the form of

y�x� �
X1
i�0

Qiyi�x�, �7�

where Qi are the constants corresponding to Q 0i. From the theory of linear
ordinary differential equation, the solution of equation (5) is made up of two
parts: a homogeneous general solution and a non-homogeneous special solution.
Substituting equation (7) into equation (5), the solution of the de¯ection y of the
beam may be written as

yi�x� � �yi�x� � ~yi�x�: �8�
Substituting equations (6), (7) and (8) into equation (5), the homogeneous
general solution �yi�x� can be obtained analytically as

�yi�x� � bi0 � bi1x� bi2x
ÿ3r�2 � bi3x

ÿ3�rÿ1�, for r 6� 1=3, 2=3, 1,

�yi�x� � bi0 � bi1x� bi2x�ln xÿ 1� � bi3x
2, for r � 1=3,

�yi�x� � bi0 � bi1x� bi2 ln x� bi3x�ln xÿ 1�, for r � 2=3,

�yi�x� � bi0 � bi1x� bi2=x� bi3 ln x, for r � 1, �9�
where bij(j=0, 1, 2, 3) are the unknown constants which can be determined
uniquely by the boundary conditions of the beam. The non-homogeneous special
solution ~yi�x� may also be obtained analytically as follows:

~yi�x� � xÿ3r�i�4, for i 6� 3�rÿ 1�, 3rÿ 4,

~yi�x� � x�ln xÿ 1�, for i � 3�rÿ 1�, ~yi�x� � ln x, for i � 3rÿ 4: �10�

By using x0= a and x1=1 to represent the two ends of the beams, the
boundary conditions of the tapered beam can be written as

yi�xj� � 0, �dyi=dx�jx�xj � 0, j � 0, 1 �11a�
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for the clamped ends and

yi�xj� � 0, �EI�x� d2yi=dx2�jx�xj � 0, j � 0, 1 �11b�

for the simply supported ends and

�EI�x� d2yi=dx2�jx�xj � 0, ��d=dx��EI�x� d2yi=dx2��jx�xj � 0, j � 0, 1, �11c�

for the free ends.
For a truncated beam, by substituting equation (8) into equations (11), the

coef®cient equations about bij ( j=0, 1, 2, 3) may be written in matrix form as

FBi � Gi �12�

where

Bi � �bi0, bi1, bi2, bi3�T, Gi � �gi1, gi2, gi3, gi4�T,

F �
f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

2664
3775: �13�

According to the actual boundary conditions of the truncated beam, there are

f11 � 1, f12 � a, f13 � aÿ3r�2, f14 � aÿ3�rÿ1�, f21 � 0, f22 � 1,

f23 � �ÿ3r� 2�aÿ3r�1, f24 � ÿ3�rÿ 1�aÿ3r�2, for r 6� 1=3, 2=3, 1,

f13 � a�ln aÿ 1�, f23 � ln a, for r � 1=3,

f13 � ln a, f14 � a�ln aÿ 1�, f23 � 1=a, f24 � ln a, for r � 2=3,

f14 � ln a, f24 � 1=a, for r � 1,

gi1 � ÿaÿ3r�i�4, gi2 � ÿ�ÿ3r� i� 4�aÿ3r�i�3, for i 6� 3�rÿ 1�, 3rÿ 4,

gi1 � ÿa�ln aÿ 1�, gi2 � ÿ ln a, for i � 3�rÿ 1�,
gi1 � ÿ ln a, gi2 � ÿ1=a, for i � 3rÿ 4, �14a�

for the clamped left end, and
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f11 � 1, f12 � a, f13 � aÿ3r�2, f14 � aÿ3�rÿ1�, f21 � 0, f22 � 0,

f23 � �ÿ3r� 2��ÿ3r� 1�aÿ3r,
f24 � ÿ3�rÿ 1��ÿ3r� 2�aÿ3r�2, for r 6� 1=3, 2=3, 1,

f13 � a�ln aÿ 1�, f23 � 1=a, for r � 1=3,

f13 � ln a, f14 � a�ln aÿ 1�, f23 � ÿ1=a2, f24 � 1=a, for r � 2=3,

f14 � ln a, f24 � ÿ1=a2, for r � 1,

gi1 � ÿaÿ3r�i�4,
gi2 � ÿ�ÿ3r� i� 4��ÿ3r� i� 3�aÿ3r�i�2, for i 6� 3�rÿ 1�, 3rÿ 4,

gi1 � ÿa�ln aÿ 1�, gi2 � ÿ1=a, for i � 3�rÿ 1�,
gi1 � ÿ ln a, gi2 � 1=a2, for i � 3rÿ 4, �14b�

for the simply supported left end, and

f11 � 0, f12 � 0, f13 � �ÿ3r� 2��ÿ3r� 1�aÿ3r,

f14 � ÿ3�rÿ 1��ÿ3r� 2�ÿ3r�1, f21 � 0, f22 � 0,

f23 � 0, f24 � ÿ3�rÿ 1��ÿ3r� 2�, for r 6� 1=3, 2=3, 1,

f13 � 1=a, f23 � 0, for r � 1=3,

f13 � ÿ1=a2, f14 � 1=a, f23 � 0, f24 � 1, for r � 2=3,

f14 � ÿ1=a2, f24 � ÿ1, for r � 1,

gi1 � ÿ�ÿ3r� i� 4��ÿ3r� i� 3�aÿ3r�i�2,
gi2 � ÿ�ÿ3r� i� 4��ÿ3r� i� 3��i� 2�ai�1, for i 6� 3�rÿ 1�, 3rÿ 4,

gi1 � ÿ1=a, gi2 � ÿ�3rÿ 1�a3rÿ2, for i � 3�rÿ 1�,

gi1 � 1=a2, gi2 � �3rÿ 2�a3�rÿ1�, for i � 3rÿ 4, �14c�

for the free left end. Identically, the boundary equations at the right end of the
truncated beam may also be obtained by letting a=1 in the corresponding
boundary equations at the left end of the beam, i.e.,

f3j � f1j�a � 1�, f4j � f2j�a � 1�, j � 1, 2, 3, 4,

gi3 � gi1�a � 1�, gi4 � gi2�a � 1�: �15�

The solution of equation (12) may be written as follows
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Bi � Fÿ1Gi �16�
Only one inverse calculation for matrix F is needed because the summing
variable i is not included in matrix F. Computational cost is greatly reduced.
The above analysis is valid for the truncated beams. However, for a sharp

ended beam, the sharp end (a=0) cannot sustain a bending moment or a
shearing force. Hence one has

bi2 � 0, bi3 � 0: �17�
The de¯ection and the rotation angle of the beam should be ®nite at any
arbitrary co-ordinate x(0E xE 1). Hence there is a limit to the beginning order
of the Taylor series load as follows:

i > 3�rÿ 1�: �18�
In such a case, the static solution of de¯ection y for the sharp ended beam may
be written as

y�x� �
X1
i�I

Q 0iyi�x�, �19�

where

I � maxfInt�3rÿ 2�, 0g, yi�x� � bi0 � bi1x� xi�4ÿ3r, �20�
in which Int is the integer function. For the cantilevered beam with a sharp end,
the coef®cients bi0 and bi1 can be directly obtained from the boundary conditions
of the beam at the clamped end as

bi0 � i� 3�1ÿ r�, bi1 � ÿiÿ 4� 3r: �21�
It should be noted that for the beams with rigid body motion, the coef®cients

bij( j=0, 1, 2, 3) cannot be uniquely decided by the approach described above
either for truncated beams or for sharp ended beams. However, one may
consider the total displacement of the beam as a superposition of the rigid body
motion and the de¯ection of the cantilevered beam. For example, for the free±
free truncated beam, the expression (7) of the de¯ection y may be rewritten as

y�x� �
X1
i�ÿ2

Q 0iyi�x�, �22�

where

yÿ2�x� � 1, yÿ1�x� � 1ÿ x �23�
and other yi(x)(i=0, 1, 2, . . .) are those of the cantilevered truncated beam
clamped at the end x=1. For the free±simply supported truncated beam, the
expression (7) of the de¯ection y may be rewritten as
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y�x� �
X1
i�ÿ1

Q 0iyi�x�, �24�

where

yÿ1�x� � 1ÿ x �25�
and other yi(x)(i=0, 1, 2, . . .) are those of the cantilevered truncated beam
clamped at the end x=1. And for the simply supported±free truncated beam,
the expression (24) of the de¯ection y is still valid but

yÿ1�x� � aÿ x �26�
and other yi(x)(i=0, 1, 2, . . .) are those of the cantilevered truncated beam
clamped at the end x= a.
For the free±free beam with a sharp end, the expression (19) of the de¯ection

y may be rewritten as

y�x� �
X1
i�Iÿ2

Q 0iyi�x�, �27�

where

yIÿ2�x� � 1, yIÿ1�x� � 1ÿ x �28�
and other yi(x)(i= I, I+1, I+2, . . .) are those of the cantilevered beam with a
sharp end. Finally for the free±simply supported beam with a sharp end, the
expression (19) of the de¯ection y may be rewritten as follows

y�x� �
X1
i�Iÿ1

Q 0iyi�x�, �29�

x y

z

1a 1b

ba

o

h0

Figure 2. A rectangular plate with variable thickness in two directions.
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where

yIÿ1�x� � 1ÿ x �30�
and other yi(x)(i= I, I+1, I+2, . . .) are those of the cantilevered beam with a
sharp end.

3. THE RAYLEIGH±RITZ METHOD

A tapered rectangular plate, as shown in Figure 2, lies in the x-y plane and is
bounded by edges x= a1a, a, y=b1b, b where a1(0E a1< 1) and b1(0Eb1< 1)
are referred to as the truncation factors of the plate in the x and y directions
respectively. The side lengths of the plate are A and B in the x and y directions
respectively, in which A=(1ÿ a1)a, B=(1ÿ b1)b. If the plate has a sharp edge
in the x direction then a1=0, and if the plate has a sharp edge in the y direction
then b1=0. The truncated plate is part of the sharp ended plate. It is assumed
that the thickness h(x) of the plate may be described by a power function as

h�x� � h0�x=a�s�y=b�t, �31�
where h0 is the thickness of the plate at the point x= a and y= b, while s and t
are referred to as the taper factors of the plate in the x and y directions
respectively. s and t may be given arbitrary real numbers if a1 6� 0 and b1 6� 0,
and s or t may be arbitrary non-negative numbers if a1=0 or b1=0. It is clear
that equation (31) can describe a variety of non-uniform rectangular plates by
giving s and t various values. Some common rectangular plates with variable
thickness are listed in Table 1 as examples.
It is assumed that the largest thickness of the plate is small compared to its

boundary dimensions and that the classical plate theory is valid, such that the
strain energy U and the kinetic energy T of the plate are given by

TABLE 1

Some common rectangular plates with variable thickness

Taper factorsz�����������}|�����������{
Type of non-uniform rectangular plates s t

Uniform plate 0 0
Linearly tapered plate in the x direction 1 0
Linearly tapered plate in the y direction 0 1
Linearly tapered plate in both directions 1 1
Parabolically tapered plate in the x direction 2 0
Parabolically tapered plate in the y direction 0 2
Parabolically tapered plate in both directions 2 2
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U � 1
2

�a
a1a

�b
b1b

D�x, y�
�

@2w

@x2

� �2

�2 @
2w

@x2
@2w

@y2
� @2w

@y2

� �2

ÿ 2�1ÿ n� @
2w

@x2
@2w

@y2
ÿ @2w

@x@y

� �2
" #)

dy dx,

T � 1
2

�a
a1a

�b
b1b

rh�x, y� @w

@t

� �2

dy dx, �32�

where D(x, y)=Eh3(x, y)/[12(1ÿ n2)] is the ¯exural rigidity of the plate, E is the
Young's modulus, w is the de¯ection of the plate, r is the material density, h is
the plate thickness and n is the Poisson's ratio.
For free vibration, the de¯ection of the plate may be expressed as

w�x, y, t� �W�x, y� eiot, �33�
where W(x, y) is the modal shape function of the plate, o is the radian
eigenfrequency of the plate, t is the time and i=

�������ÿ1p
.

Introducing next non-dimensional co-ordinates

x � x=a, Z � y=b �34�
and substituting equations (31), (33) and (34) into equations (32), the maximum
strain energy and the maximum kinetic energy of the plate may be written as

Umax � b

2a3
D0

�1
a1

�1
b1

x3sZ3t
�

@2W

@x2

� �2

�2g2 @
2W

@x2
@2W

@Z2
� g4

@2W

@Z2

� �2

ÿ 2�1ÿ n�g2 @2W

@x2
@2W

@Z2
ÿ @2W

@x@Z

� �2
" #)

dZ dx,

Tmax � ab

2
rh0o2

�1
a1

�1
b1

xsZtW2 dZ dx, �35�

in which, D0 � Eh30/[12(1ÿ n20)] is the ¯exural rigidity of the plate at the point
x=1, Z=1. g= a/b=G(1ÿ b1)/(1ÿ a1) where G=A/B is the aspect ratio of
the plate.
Assuming that the variables in the modal shape function W(x, Z) are

separable, the modal function W(x, Z) of the plate may be expressed in terms of
a series as

W�x, Z� �
X1
m�M1

X1
n�N1

Amnjm�x�cn�Z� �36�

where fm(x) and cn(Z) are the appropriate admissible functions which satisfy at
least the geometric boundary conditions, and if possible, all the boundary
conditions in the Rayleigh±Ritz method. Amn are the unknown coef®cients. M1
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and N1 are the beginning orders of the admissible functions fm(x) and cn(Z)
respectively, which are dependent on the practical case to be investigated.
Substituting equation (36) into equation (35) and minimizing the total

potential energy of the plate with respect to the coef®cients Amn

�@=@Amn��Umax ÿ Tmax� � 0 �37�
will lead to the next eigenfrequency equationX1
m�M1

X1
n�N1

�Cmnij ÿ l2�Emi
�Fnj�Amn � 0, i �M1, M1 � 1, M1 � 2, . . . ,1

j � N1, N1 � 1, N1 � 2, . . . ,1, �38�
where

Cmnij � E
�2, 2�
mi F

�0, 0�
nj � 2g2�1ÿ n�E�1, 1�mi F

�1, 1�
nj � g4E�0, 0�mi F

�2, 2�
nj

� ng2�E�0, 2�mi F
�2, 0�
nj � E

�2, 0�
mi F

�0, 2�
nj �, �39�

in which

l2 � rh0o2a4=D0 � rh0o2A4=�D0�1ÿ a1�4� � O2=�1ÿ a1�4,

E
�p, q�
mi �

�1
a1
x3s�dpjm=dx

p��dqji=dx
q� dx,

F
�p, q�
nj �

�1
b1

Z3t�dpcn=dZ
p��dqcj=dZ

q� dZ, p, q � 0, 1, 2,

�Emi �
�1
a1
xsjmji dx, �Fnj �

�1
b1

Ztcncj dZ: �40�

Truncating m, n, i, j in equation (38), the solution yields the eigenfrequencies of
vibration of the plate together with the coef®cients for the modal shapes (36).
Here the static tapered beam functions presented in the last section are taken as
the admissible functions of the tapered rectangular plate, i.e.,

jm�x� � ym�x�, cn�Z� � yn�Z�, �41�
where ym(x) are the mth static tapered beam functions which satisfy the thickness
variation and the boundary conditions of the plate in the x direction and yn(Z)
are the nth static tapered beam functions which satisfy those in the y direction.
Correspondingly, the taper factor r of the beam should be replaced by the taper
factors s and t of the plate in the x and y directions respectively, while the
truncation factor a of the beam should be replaced by the truncation factors a1
and b1 of the plate in the x and y directions respectively. In addition, the length l
of the sharp ended beam should be replaced by the lengths a and b of the sharp
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ended plate in the x and y directions respectively and the length L of the
truncated beam should be replaced by the lengths A and B of the truncated plate
in the x and y directions respectively. M1 and N1 correspond to the beginning
orders of ym(x) and yn(x) respectively.

4. NUMERICAL EXAMPLES

In order to demonstrate the applicability and the accuracy of the proposed
approach, equation (38) has been used to generate results for several tapered
rectangular plates in one or two directions with a Poisson's ratio n=0�3. The
Chebyshev±Gauss numerical quadrature with 40 points is applied to the
integrations in equation (40) for the truncated rectangular plates, although the
exact values of these integrations may also be obtained analytically. However
analytical values of the integrations in equation (40) are given for the sharp
ended rectangular plates. Any desired accuracy may be theoretically achieved
simply by increasing the number of terms of admissible functions. However, the
convergency study shows that there is a limit to increasing the numbers of terms
of the admissible functions, especially for plates with higher truncation factors.

TABLE 2

The fundamental eigenfrequency parameters 
1 of a linearly tapered square plate in one
direction, the values in ( ) are from reference [14] and the values in [ ] are from reference [10],

which have been transformed

Truncation factor a1
Boundary Terms z���������������������������������������������������������}|���������������������������������������������������������{
conditions m6 n 1/10 1/5 1/3 1/2 5/7

SSSS 16 1 10�329 11�537 12�998 14�736 16�909
26 2 9�7183 11�123 12�750 14�615 16�875
36 3 9�6930 11�108 12�739 14�607 16�867
46 4 9�6921 11�107 12�739 14�607 16�867
56 5 9�6919 11�107 12�739 14�607 16�867
± ± ± ± [14�604] (16�864)

FCFC 46 4 5�5227 5�4136 5�5042 5�7781 6�2436
CCCC 46 4 16�005 19�117 22�549 26�306 30�668
SSFF 46 5 3�8414 4�8469 5�8961 6�9967 8�2294
FCFF 46 5 4�5818 4�2466 3�9851 3�7857 3�6239
CCFF 46 5 9�8464 11�791 13�924 16�254 18�954
FFSS 56 4 5�6030 5�8677 6�4111 7�2072 8�2759

± ± ± ± ± (8�2400)
FFCC 56 4 9�1616 10�326 12�324 15�035 18�457
FFFC 56 4 2�3914 2�4342 2�5363 2�7185 3�0158
CCSS 46 4 12�912 15�403 18�153 21�167 24�671

± ± ± ± [21�160] ±
SSCC 46 4 13�814 16�008 18�512 21�341 24�719
FFFF 66 6 8�0031 8�3679 9�1066 10�158 11�573
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Furthermore, the actual accuracy is also dependent on the number of signi®cant
®gures used by the computer. Quadruple precision is used in the numerical
computation. For the sake of brevity, four capital letters are used to represent
the boundary conditions of the plate. The ®rst two represent the boundary
conditions of the plate in the x direction and others represent those in the y
direction.
The fundamental eigenfrequency parameters O1 of a linearly tapered square

plate in the x direction for different boundary conditions and truncation factor
a1 are given in Table 2. The zero eigenfrequencies for the plate with fully free
edges are not listed here. A convergency study has been carried out for a simply
supported square plate with linearly variable thickness in the x direction. It is
found that for such a plate, good accuracy may be obtained by using only two
terms of the admissible functions in each direction, and the higher the truncation
factor is, the more rapid is the convergency. From the table, one can see that the
eigenfrequency parameters increase with the increase of the truncation factor of
the plate except for the FCFF plate. Comparing the results with those obtained
from the literature shows that the proposed method has good accuracy and
rapid convergency. Furthermore, it should be pointed out that both the accuracy
and the convergency of the present method are better than those using
conventional admissible functions for constant section beams such as vibrating
beam functions [2]. This is especially true for plates with larger taper factors and
smaller truncation factors, as seen in Appendix A.

TABLE 3

The first five eigenfrequency parameters 
i (i=1, 2, . . . , 5) of a uniform square plate, the
values in ( ) are from reference [2]

Mode number i
Boundary z��������������������������������������������������������������������}|��������������������������������������������������������������������{
conditions 1 2 3 4 5

SSSS 19�743 49�354 49�354 78�971 98�733
(19�739) (49�348) (49�348) (78�957) (98�691)

CCCC 36�004 73�432 73�432 108�27 131�83
(35�992) (73�413) (73�413) (108�27) (131�64)

SSFF 9�6605 16�162 36�725 39�052 46�883
(9�6314) (16�135) (36�726) (38�945) (46�738)

CCFF 22�227 26�485 43�625 61�337 67�403
(22�272) (26�529) (43�664) (61�466) (67�549)

CFCF 6�9465 24�029 26�673 47�757 63�023
(6�9421) (24�034) (26�681) (47�785) (63�039)

CFFF 3�4853 8�5143 21�350 27�298 31�032
(3�4917) (8�5246) (21�429) (27�331) (31�111)

SFSF 3�4011 17�398 19�369 38�283 51�300
(3�3687) (17�407) (19�367) (38�291) (51�324)

FFFF 13�476 19�656 24�318 34�871 34�872
(13�489) (19�789) (24�432) (35�024) (35�024)



TAPERED RECTANGULAR PLATES 717

The proposed approach is also suitable for the free vibration of a uniform
square plate which is considered as the special case, by letting both the taper
factors s and t of the plate equal to zero. The ®rst ®ve eigenfrequency
parameters Oi (i=1, 2, . . . , 5) of a uniform square plate with different boundary
conditions are given in Table 3. The three zero eigenfrequencies are not listed
here for the plate with fully free edges. Six terms of the static uniform beam
functions are used in each direction; however, eight terms are used for the FF
boundary conditions and seven terms are used for the SF boundary conditions.
The results are compared with those in reference [2]. Good agreement has been
observed.

TABLE 4

The first five eigenfrequency parameters 
i (i=1, 2, . . ., 5) of a simply supported rectangular
plate with variable thickness in one direction, the values in ( ) are from reference [14] and the

values in [ ] are from reference [10], which have been transformed

G s a1 O1 O2 O3 O4 O5

1/2 1/2 1/5 9�1607 14�7317 23�821 31�085 36�591
1/3 9�8543 15�808 25�623 33�474 39�391
1/2 10�586 16�957 27�527 35�978 42�333
5/7 11�397 18�241 29�639 38�745 45�587

1 1/5 6�6773 11�107 17�566 22�748 26�791
1/3 7�8023 12�739 20�402 26�551 31�353
1/2 9�0507 14�607 23�589 30�782 36�271

[8�9690] [14�564] [23�542] ± ±
5/7 10�518 16�867 27�371 35�766 42�096

(10�518) (16�864) (27�361) (35�764) (41�978)
1 1/2 1/5 14�732 36�275 36�591 58�765 70�562

1/3 15�808 39�207 39�391 64�146 77�286
1/2 16�956 42�247 42�333 67�788 83�985
5/7 18�241 45�566 45�588 72�951 91�004

1 1/5 11�107 25�773 26�960 43�797 46�569
1/3 12�729 30�588 31�353 50�603 57�739
1/2 14�607 35�881 36�271 58�265 69�895

[14�604] [35�877] [36�267] ± ±
5/7 16�863 41�984 42�097 67�422 83�372

(16�864) (41�978) (42�090) (67�411) (83�379)
2 1/2 1/5 36�274 58�765 95�021 116�05 148�30

1/3 39�206 63�146 102�36 128�96 158�94
1/2 42�246 67�788 110�05 141�56 170�06
5/7 45�571 72�951 118�54 154�32 182�61

1 1/5 25�773 42�796 69�975 72�429 106�39
1/3 30�587 50�603 81�451 92�896 126�10
1/2 35�881 58�264 94�286 15�49 146�40

[36�199] [58�415] [94�325] ± ±
5/7 41�997 67�406 109�47 140�48 169�30

(41�978) (67�411) (109�40) (140�59) (168�19)
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The ®rst ®ve eigenfrequency parameters Oi (i=1, 2, . . . , 5) of a simply
supported rectangular plate with variable thickness in the x direction for
different aspect ratio G, truncation factor a1 and taper factor s are given in Table
4. Five terms of the static beam functions are used in each direction. It is shown
that the eigenfrequency parameters decrease with the increase of the taper factor
s but increase with the increase of the truncation factor a1 and the aspect ratio
G. The results are compared with those from references [14] and [10]. Good
agreement has been observed.
The fundamental eigenfrequency parameters O1 of a linearly tapered square

plate with the same taper factors in both directions and with different boundary
conditions are given in Table 5. Three terms of the static tapered beam functions
are used in each direction, but four terms are used for the FF boundary
conditions. It can be seen from the table that the plate with fully clamped edges
always gives the highest eigenfrequency parameters when compared with other
boundary conditions. This is because the plate with fully clamped edges is the

TABLE 5

The fundamental eigenfrequency parameters 
1 of a linearly tapered square plate in two
directions

Truncation factors a1= b1
Boundary z��������������������������������������������������������������������}|��������������������������������������������������������������������{
conditions 1/10 1/5 1/3 1/2 5/7

SSSS 4�9012 6�3235 8�2490 10�814 14�410
CCCC 7�1689 10�180 14�137 19�225 26�122
SSFF 2�4695 3�1188 3�9983 5�2384 7�0409
CCFF 4�3535 5�6920 7�8389 11�033 15�731
SSCC 6�2352 8�5537 11�620 15�602 21�056
FCFF 2�7323 2�7848 2�8369 2�9390 3�1379
FCFC 2�9607 3�3238 3�8426 4�5517 5�5558
FSFS 2�5305 2�5282 2�5561 2�6558 2�8948
SCFF 3�9783 4�9642 6�4756 8�5954 11�476
SSFS 3�3917 3�9119 4�7768 6�1450 8�3076
SSFC 3�6918 4�3213 5�2857 6�7621 9�0722
SCSC 5�9928 8�1347 10�972 14�662 19�723
CCFC 4�3891 5�7630 7�9585 11�255 16�257
CSFF 2�9495 3�9026 5�2837 7�3492 10�503
CSCS 5�8290 7�9679 10�819 14�537 19�644
SSCS 5�3463 7�1167 9�5091 12�682 17�112
CCCS 6�7371 9�3804 12�827 17�247 23�237
SSSC 5�6508 7�4916 9�9075 13�045 17�359
CCSC 6�5551 9�1185 12�521 16�951 23�029
SCCS 6�1031 8�2406 11�043 14�688 19�713
SCFS 3�9900 4�9855 6�5306 8�7638 12�020
CSFS 3�6769 4�4524 5�7695 7�8892 11�305
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stiffest. It can also be seen from the table that the eigenfrequency parameters
generally increase with the increase of the truncation factor of the plate.
The ®rst ®ve eigenfrequency parameters Oi (i=1, 2, . . . , 5) of a cantilevered

tapered rectangular plates with a sharp edge are tabulated in Table 6. The results
for different taper factor s and aspect ratio G are given. Six terms of the static
tapered beam functions in the x direction and eight terms of the static uniform
beam functions in the y direction are used.

5. CONCLUDING REMARKS

A new set of admissible functions which are the static solutions of a tapered
beam, or a strip with unit breadth taken from the rectangular plate under
consideration in the longitudinal or transverse directions, under Taylor series
loads, is established for the free vibration analysis of a wide range of non-
uniform rectangular plates. Some numerical results are tabulated and compared
with those available from the literature, and good agreement has been observed.
It can be seen that unlike the conventional admissible functions, this set of static
tapered beam functions can appropriately vary with the thickness variation of
the plate. The basic concept to form the set of static beam functions is
theoretically sound, and very clear and simple, and requires no complicated
mathematical knowledge. This approach is suitable for both tapered rectangular

TABLE 6

Theeigenfrequencyparameters 
i (i=1, 2, . . . , 5) of a cantilevered tapered rectangular plate
with a sharp edge

G s O1 O2 O3 O4 O5

1/2 1/2 4�5753 5�4874 8�1950 12�676 18�450
3/4 4�8972 5�6584 7�7130 11�017 15�390
1 5�2879 5�7794 7�3100 9�6956 12�735
3/2 5�3163 5�6426 6�3526 7�3536 8�4926

1 1/2 4�5443 7�8693 16�893 19�276 22�424
3/4 4�9530 7�5765 14�421 17�200 19�490
1 5�2521 7�2608 12�233 15�106 16�719
3/2 5�3841 6�3471 8�3834 10�372 10�573

3/2 1/2 4�5180 10�798 18�635 26�674 30�359
3/4 4�9224 10�098 16�878 22�546 23�543
1 5�2181 9�2905 14�923 18�183 18�991
3/2 5�3505 7�3181 10�307 10�579 12�561

2 1/2 4�4986 13�891 18�623 31�694 43�245
3/4 4�8994 12�834 16�862 26�139 33�237
1 5�1917 11�509 14�906 21�562 24�159
3/2 5�3217 8�3162 10�495 12�243 13�996
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plates and uniform rectangular plates with various boundary conditions and may
be also directly applied in the case of edges elastically restrained. Although in
general it is possible to improve accuracy by increasing the number of terms of
the admissible functions, a large number of terms will however lead to the
appearance of an ill-conditioned eigenfrequency equation. Fortunately the ®rst
few eigenfrequencies can be obtained with good accuracy by using only a small
number of terms of the static beam functions.
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APPENDIX A

The comparison of the ®rst two eigenfrequency parameters
Oi �

�������������������
rbh0=EI0

p
L2oi �i � 1, 2�, using the static beam functions (for tapered

beams) presented in this paper and the conventional vibrating beam functions
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(for constant section beams), for the beams with length L, width b and linearly
(r=1) or parabolically (r=2) varying height.

Taper
factor r

Truncation
factor a Method

Number of
terms O1 O2

Clamped±clamped beam
2 0�1 VBFy 4 8�2585 22�2946

8 6�6971 15�5012
Present 4 5�7931 12�1383

0�3 VBF 4 9�5950 26�4739
8 8�9333 22�9517

Present 4 8�8191 22�4504
1 0�1 VBF 4 10�9905 31�7723

8 10�1738 28�1277
Present 4 9�8847 27�0355

0�3 VBF 4 13�6359 38�0864
8 13�4976 37�1310

Present 4 13�4835 37�0727
Simply±simply supported beam

2 0�1 VBF 4 1�3793 12�7737
8 0�92885 9�2279

Present 4 0�73041 7�7919
0�3 VBF 4 2�8981 15�9297

8 2�7617 14�3940
Present 4 2�7474 14�2523

1 0�1 VBF 4 4�1244 20�0607
8 3�9317 18�4365

Present 4 3�8895 18�1251
0�3 VBF 4 5�7663 24�4316

8 5�7466 24�1088
Present 4 5�7454 24�0949

yVBF denotes vibrating beam functions.
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